欢迎进入深圳大学数学与统计学院!

您当前所在位置: 首页>科学研究>科研论文

科学研究

快速导航

重要通知

  • 123

    讲座人: 李兰 讲座时间:2018-11-06 : 12 00 至 2018-11-07 : 12 00

    期刊:123

    SCI索引:索引1

    JCK分区:分区1

    内容简介:

    123

  • 12

    讲座人: 陈志敏 讲座时间:2018-11-02 : 06 45 至 2020-11-02 : 12 00

    期刊:1

    SCI索引:索引3

    JCK分区:分区2

    内容简介:

    11111

  • 深度学习地震勘探数据处理

    讲座人: 永学荣 讲座时间:2018-06-15 : 03 00 至 2018-06-15 : 04 00

    期刊:

    SCI索引:索引1

    JCK分区:分区1

    内容简介:

    报告内容:地震勘探是寻找油气资源的主要手段,本报告主要汇报我们在地震数据处理(去噪、插值、反演)中构造的一系列稀疏变换、以及近期基于深度学习地震勘探数据去噪和反演的初步工作。

  • Dynamics of a new 5D hyperchaotic system based on modified generalized Lorenz system

    讲座人: 李兰 讲座时间:2017-05-08 : 10 00 至 2017-05-18 : 11 00

    期刊:

    SCI索引:索引1

    JCK分区:分区1

    内容简介:

    This paper reports a new five-dimensional (5D) hyperchaotic system with three positive Lyapunov exponents, which is generated by adding a linear controller to the second equation of a 4D system which is obtained by coupling of a 1D linear system and a 3D modified generalized Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical system behaviors. Of particular interest are the observations that the hyperchaotic system not only has a hyperchaotic attractor with three positive Lyapunov exponents under a unique equilibrium, three or infinitely many equilibria, and there are three types of coexisting attractors. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, Poincare projections and power spectrum verifies the existence of the hyperchaotic and chaotic attractors. Moreover, stability of hyperbolic or nonhyperbolic equilibrium and two complete mathematical characterization for 5D Hopf bifurcation are rigidly given.



深圳大学数学与统计学院