Academic Programs |
|
Scientific research |
[1]Y. Hu, G. Li, C. K. W. Yu and T. L. Yip, Quasi-convex feasibility problems: Subgradient methods and convergence rates, European Journal of Operational Research, 298(1): 45-58, 2022. [2]J. Qin, Y. Hu, J.-C. Yao, R. W. T. Leung, Y. Zhou, Y. Qin and J. Wang, Cell fate conversion prediction by group sparse optimization method utilizing single-cell and bulk OMICs data, Briefings in Bioinformatics, 22(6): bbab311, 2021. [3]Y. Hu, J. Li and C. K. W. Yu, Convergenece rates of subgradient methods for quasi-convex optimization problems, Computational Optimization and Applications, 77(1): 183-212, 2020. [4]J. Wang, Y. Hu, C. K. W. Yu, C. Li and X. Yang, Extended Newton methods for multiobjective optimization: Majorizing function technique and convergence analysis, SIAM Journal on Optimization, 29(3): 2388-2421, 2019. [5]C. Li, L. Meng, L. Peng, Y. Hu and J.-C. Yao, Weak sharp minima for convex infinite optimization problems in normed linear spaces, SIAM Journal on Optimization, 28(3): 1999-2021, 2018. [6]J. Wang, Y. Hu, C. Li and J.-C. Yao, Linear convergence of CQ algorithms and applications in gene regulatory network inference, Inverse Problems, 33(5): 055017, 2017. [7]Y. Hu, C. Li, K. Meng, J. Qin and X. Yang, Group sparse optimization via L(p,q) regularization, Journal of Machine Learning Research, 18(30): 1-52, 2017. [8]Y. Hu, C. Li and X. Yang, On convergence rates of linearized proximal algorithms for convex composite optimization with applications, SIAM Journal on Optimization, 26(2):1207-1235, 2016. [9]Y. Hu, X. Yang and C.-K. Sim, Inexact subgradient methods for quasi-convex optimization problems, European Journal of Operational Research, 240(2): 315-327, 2015. [10]C. Li, X. P. Zhao and Y. Hu, Quasi-Slater and Farkas–Minkowski qualifications for semi-infinite programming with applications, SIAM Journal on Optimization, 23(4): 2208-2230, 2013. |