Academic Programs |
|
Scientific research |
[1] P. Roesch, Y. Yin and J. Zeng, Rigidity of non-renormalizable Newton maps, to appear in SCIENCE CHINA Mathematics, 2023</br>
[2] G. Cui, Y. Gao and J. Zeng, Invariant graphs of rational maps. Advances in Mathematics, 404(2022), 50pp</br> [3] Y. Gao, L. Yang and J. Zeng, Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete Contin. Dyn. Syst. 42 (2022), no. 1, 319–326.</br> [4] X.Wang, Y.Yin and J. Zeng, Dynamics of Newton maps. Ergodic Theory and Dynamical Systems, 46pp, published online, 2021, doi:10.1017/etds.2021.168</br> [5] J. Zeng, Criterion for rays landing together. Trans. Amer. Math. Soc. 373(2020), no.9, 6479-6502</br>
[6] W. Qiu, F. Yang and J. Zeng, Quasisymmetric geometry of Sierpiński carpet Julia sets. Fundamenta Mathematicae, 244 (2019), no. 1, 73– 107.</br> [7] Y. Gao and J. Zeng, The landing of parameter rays at non-recurrent critical portraits. Sci. China Math. 61(2018),no. 12, 2267–2282.</br> [8] Y.Gao, P. Haïssinsky, D.Meyer and J. Zeng, Invariant Jordan curves of Sierpiński carpet rational maps. Ergodic Theory Dynam. Systems 38(2018),no. 2, 583–600.</br> [9] Y.Gao,J. Zeng and S. Zhao, A characterization of Sierpiński carpet rational maps. Discrete Contin. Dyn. Syst. 37(2017),no. 9, 5049–5063
|