Li Quanrong
  • Educational level:

  • Professional titles: Associate Professor

  • Telephone:26532674

  • Email:quanrong_li@szu.edu.cn

  • Address:Room 313,Huixing Building

Educational level Professional titles Associate Professor
Professional titles 26532674 Email quanrong_li@szu.edu.cn
Address Room 313,Huixing Building Personal Profile
Educational experience Work experience
Research Field Fitness of fluid dynamics equations, fluid stability theory, fluid boundary layer theory Honors obtained
Academic Programs Scientific research 【1】 S. Ding,Q. Li*,Local existence of unique strong solution to non-isothermal model for incompressible nematic liquid crystals in 3D , Applied Mathematics and Computation, 2016.11.1,290: 487-506. (CAS Top Journal in Region 1, JCR Q1, IF 2020:4.091)
【2】 Q. Li ,Global well-posedness of the non-isothermal model for incompressible nematic liquid crystals , Boundary Value Problems, 2017.08.9, 2017: 1-23. (CAS Category 2, JCR Q1, IF 2020:2.075)
【3】 S. Ding,Z. Xin,Q. Li*,Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions , Journal of Mathematical Fluid Mechanics, 2018.06, 20(2): 603-629. (CAS Category 3, JCR Q3, IF 2020:1.298)
【4】 S. Ding, B. Huang*, Q. Li, Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model, Acta Mathematica Scientia, 2019, 39B(6): 1525-1537.(CAS Category 3, JCR Q2, IF 2020:1.258)
【5】 Q. Li, S. Ding*, Symmetrical Prandtl boundary layer expansions of steady Navier-Stokes equations on bounded domain, J. Differential Equations 268 (2020) :1771-1819. (CAS Subcategory 1 Top Journal, JCR Q1, IF 2020:2.430)
【6】 S. Ding, Z. Ji, Q. Li*,Rayleigh–Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions,Math Meth Appl Sci.43(2020): 6338-6362.(CAS Category 2, JCR Q1, IF 2020:2.321)
【7】 Q. Li, S. Ding*, Global well-posedness of the navier-stokes equations with navier-slip boundary conditions in a strip domain,Communications on Pure & Applied Analysis, 2021, 20 (10) : 3561-3581.(CAS Category 3, JCR Q2, IF 2020:1.916)
【8】 Q. Li, C. Wang*, Local well-posedness of nonhomogeneous imcompressible liquid crystals model without compatibility condition, Nonlinear Analysis: Real World Applications,65(2022),103474:1-22. (CAS Category 2, JCR Q1, IF 2020:2.763)

Personal Profile

Li Quanrong, from Zhanjiang. He received his doctorate in science in 2018(under Professor Ding Shijin) . He is currently an associate professor in the Shenzhen University School of Mathematical Sciences and a supervisor of master's degree South China Normal University. He is mainly engaged in the theoretical research of the fluid dynamics equations in the partial differential equation theory, and has made some achievements in the well-posedness, stability and boundary layer theory of the dynamic equations of liquid crystal materials and Navier-Stokes equations. Master's degree in basic mathematics or applied mathematics studies. Applicants are required to have a good foundation in mathematical analysis and have taken some analytical courses.

Educational experience

Work experience

Research Field

  • Fitness of fluid dynamics equations, fluid stability theory, fluid boundary layer theory

Honors obtained

Academic Programs

Scientific research

  • 【1】 S. Ding,Q. Li*,Local existence of unique strong solution to non-isothermal model for incompressible nematic liquid crystals in 3D , Applied Mathematics and Computation, 2016.11.1,290: 487-506. (CAS Top Journal in Region 1, JCR Q1, IF 2020:4.091) 【2】 Q. Li ,Global well-posedness of the non-isothermal model for incompressible nematic liquid crystals , Boundary Value Problems, 2017.08.9, 2017: 1-23. (CAS Category 2, JCR Q1, IF 2020:2.075) 【3】 S. Ding,Z. Xin,Q. Li*,Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions , Journal of Mathematical Fluid Mechanics, 2018.06, 20(2): 603-629. (CAS Category 3, JCR Q3, IF 2020:1.298) 【4】 S. Ding, B. Huang*, Q. Li, Global Existence and Decay Estimates for the Classical Solutions to a Compressible Fluid-Particle Interaction Model, Acta Mathematica Scientia, 2019, 39B(6): 1525-1537.(CAS Category 3, JCR Q2, IF 2020:1.258) 【5】 Q. Li, S. Ding*, Symmetrical Prandtl boundary layer expansions of steady Navier-Stokes equations on bounded domain, J. Differential Equations 268 (2020) :1771-1819. (CAS Subcategory 1 Top Journal, JCR Q1, IF 2020:2.430) 【6】 S. Ding, Z. Ji, Q. Li*,Rayleigh–Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions,Math Meth Appl Sci.43(2020): 6338-6362.(CAS Category 2, JCR Q1, IF 2020:2.321) 【7】 Q. Li, S. Ding*, Global well-posedness of the navier-stokes equations with navier-slip boundary conditions in a strip domain,Communications on Pure & Applied Analysis, 2021, 20 (10) : 3561-3581.(CAS Category 3, JCR Q2, IF 2020:1.916) 【8】 Q. Li, C. Wang*, Local well-posedness of nonhomogeneous imcompressible liquid crystals model without compatibility condition, Nonlinear Analysis: Real World Applications,65(2022),103474:1-22. (CAS Category 2, JCR Q1, IF 2020:2.763)