深圳大学数学科学学院
荔园杰出学者讲座第三十八期
讲座题目:Distributed Recursion Revisited
主讲人:戴彧虹 院士(中国科学院数学与系统科学研究院)
讲座时间:2025年11月28日下午14:30-15:30
讲座地点:深圳大学粤海校区汇星楼二号教室
内容概述:The distributed recursion (DR) algorithm is an effective method for solving the pooling problem that arises in many applications. It is based on the well-known P-formulation of the pooling problem, which involves the flow and quality variables; and it can be seen as a variant of the successive linear programming (SLP) algorithm, where the linear programming (LP) approximation problem can be transformed from the LP approximation problem derived by using the first-order Taylor series expansion technique. In this talk, we first propose a new nonlinear programming (NLP) formulation for the pooling problem involving only the flow variables, and show that the DR algorithm can be seen as a direct application of the SLP algorithm to the newly proposed formulation. With this new useful theoretical insight, we then develop a new variant of DR algorithm, called penalty DR (PDR) algorithm, based on the proposed formulation. The proposed PDR algorithm is a penalty algorithm where violations of the (linearized) nonlinear constraints are penalized in the objective function of the LP approximation problem with the penalty terms increasing when the constraint violations tend to be large. Compared with the LP approximation problem in the classic DR algorithm, the LP approximation problem in the proposed PDR algorithm can return a solution with a better objective value, which makes it more suitable for finding high-quality solutions for the pooling problem. Numerical experiments on benchmark and randomly constructed instances show that the proposed PDR algorithm is more effective than the classic SLP and DR algorithms in terms of finding a better solution for the pooling problem.
主讲人简介:戴彧虹,最优化专家,中国科学院院士,中国科学院数学与系统科学研究院副院长、研究员、博士生导师。现任中国运筹学会理事长、中国数学会副理事长、国际运筹学会联合会(IFORS)副主席。
戴彧虹院士长期致力于最优化与人工智能研究,在非线性优化、整数规划及应用优化方面取得了系统和创造性的成果,得到了理论界和应用界广泛引用和好评。他合作提出的戴-袁方法,被国际同行认为是四个最主要的非线性共轭梯度法之一;独立解决了国际著名的BFGS拟牛顿法的收敛性公开问题;在给出梯度法超线性收敛理论同时,提出了Dai-Fletcher方法。针对航天、通信、能源、物流等领域的核心优化问题,他和合作者发展了一系列高效算法,并自主研发了国内第一个现代意义上的混合整数规划求解器CMIP。从航天飞行器在线轨迹优化问题和无线通信联合接入和功率控制问题出发,他和合作者提出了最小约束违背优化理论和基础算法,突破经典KKT稳定点的局限而提出了D稳定点。
戴彧虹院士曾获国家自然科学二等奖(2006,排名第二)、冯康科学计算奖(2015)、中国数学会陈省身数学奖(2017)、中国工业与应用数学学会首届萧树铁应用数学奖(2018)、中国运筹学会运筹应用奖(2018)。应邀在2022年国际数学家大会作45分钟邀请报告,在2022年国际数学规划大会作一小时大会报告。主持国家自然科学基金委创新研究群体项目和科技部重点研发计划专项。2021年当选中国工业与应用数学学会会士,2022年当选首届中国运筹学会会士,2023年当选国际运筹学会联合会会士。2025年当选为中国科学院院士。
欢迎师生参加!
数学科学学院
2025年11月27日