黄国坚
  • 教育程度:博士

  • 职称:助理教授

  • 电话:

  • 邮箱:kkwong@szu.edu.cn

  • 地址:

教程程度 博士 职称 助理教授
电话 邮箱 kkwong@szu.edu.cn
地址 教育经历 2017    香港大学    博士
工作经历 2024起     深圳大学     助理教授
2019-2024     香港大学     博士后
2018-2019     Korea Institute For Advanced Study      Project research fellow
研究领域 多复变、复几何、代数几何、霍奇论、复双曲问题、函数超越性论、偏微分方程
获得荣誉 教学课程 线性代数
科研成果 1. Extension of inverses of Γ-equivariant holomorphic embeddings of bounded symmetric domains of rank ≥ 2 and applications to rigidity problems (with Ngaiming Mok). To appear in Algebraic Geometry and Physics.

2. Quasi-projective Manifolds Uniformized by Carathéodory Hyperbolic Manifolds and Hyperbolicity of Their Subvarieties (with Sai-Kee Yeung). IMRN(2024), no.2, 1771–1800. rnad134.

3. On Effective Existence of Symmetric Differentials of Complex Hyperbolic Space Forms. Math Z. p.1-23, 2018. arXiv:1810.03240

4. Exact meromorphic solutions of the real cubic Swift-Hohenberg equation (with Robert Conte, Tuen Wai Ng). Studies in Applied Mathematics129(1) p.117-131, 2012. arXiv:1202.3579
科研项目

个人简介

English personal website: kkwongm.wordpress.com

教育经历

  • 2017 香港大学 博士

工作经历

  • 2024起 深圳大学 助理教授 2019-2024 香港大学 博士后 2018-2019 Korea Institute For Advanced Study Project research fellow

研究领域

  • 多复变、复几何、代数几何、霍奇论、复双曲问题、函数超越性论、偏微分方程

获得荣誉

教学课程

  • 线性代数

科研成果

  • 1. Extension of inverses of Γ-equivariant holomorphic embeddings of bounded symmetric domains of rank ≥ 2 and applications to rigidity problems (with Ngaiming Mok). To appear in Algebraic Geometry and Physics. 2. Quasi-projective Manifolds Uniformized by Carathéodory Hyperbolic Manifolds and Hyperbolicity of Their Subvarieties (with Sai-Kee Yeung). IMRN(2024), no.2, 1771–1800. rnad134. 3. On Effective Existence of Symmetric Differentials of Complex Hyperbolic Space Forms. Math Z. p.1-23, 2018. arXiv:1810.03240 4. Exact meromorphic solutions of the real cubic Swift-Hohenberg equation (with Robert Conte, Tuen Wai Ng). Studies in Applied Mathematics129(1) p.117-131, 2012. arXiv:1202.3579

科研项目