数学与统计学院学术报告[2023]029号
(高水平大学建设系列报告800号)
报告题目: Semiparametric efficient estimation of genetic relatedness with double machine learning
报告人:郭旭 教授 (北京师范大学)
报告时间:2023年5月10日10:00 - 11:00
报告地点:汇星楼金融科技学院教室4号报告厅
报告内容:In this paper, we propose double machine learning procedures to estimate genetic relatedness between two traits in a model-free framework. Most existing methods require specifying certain parametric models involving the traits and genetic variants. However, the bias due to model mis-specification may yield misleading statistical results. Moreover, the semiparametric efficient bounds for estimators of genetic relatedness are still lacking. In this paper, we develop semi-parametric efficient and model-free estimators and construct valid confidence intervals for two important measures of genetic relatedness: genetic covariance and genetic correlation, allowing both continuous and discrete responses. Based on the derived efficient influence functions of genetic relatedness, we propose a consistent estimator of the genetic covariance as long as one of genetic values is consistently estimated. The data of two traits may be collected from the same group or different groups of individuals. Various numerical studies are performed to illustrate our introduced procedures. We also apply proposed procedures to analyze Carworth Farms White mice genome-wide association study data.
报告人简历:
郭旭博士,现为北京师范大学统计学院教授,博士生导师。郭老师一直从事回归分析中复杂假设检验的理论方法及应用研究,近年来皆在对高维数据发展适当有效的检验方法。部分成果发表在JRSSB, JASA,Biometrika和JOE。担任《应用概率统计》杂志第十届编委。先后主持国家自然科学基金青年基金和国家自然科学基金面上项目。曾荣获北师大第十一届“最受本科生欢迎的十佳教师”和北师大第18届青教赛一等奖。
欢迎师生参加!
报告邀请人:魏正红
数学与统计学院
2023年5月4日