学术报告

当前位置: 首页 学术报告 正文
学术报告一百一十六:Convergence analysis for low rank partially orthogonal tensor approximation problem

时间:2021-11-22 15:56

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2021] 116

(高水平大学建设系列报告516)

报告题目: Convergence analysis for low rank partially orthogonal tensor approximation problem

报告人:叶科  副研究员  (中国科学院数学与系统科学研究院

报告时间:20211124  14:50-15:40

直播平台及链接: 腾讯会议 会议ID647 171 244  

报告内容:Low rank partially orthogonal tensor approximation (LRPOTA) is an important problem in tensor computations and their applications. It includes Low rank orthogonal tensor approximation (LROTA) problem as a special case. A classical and widely used algorithm for the LRPOTA problem is the alternating least square and polar decomposition method (ALS-APD). In this talk, we will introduce an improved version ALS-iAPD of the classical ALS-APD, for which all the following three fundamental properties will be addressed: (i) the algorithm converges globally and the whole sequence converges to a KKT point without any assumption; (ii) it exhibits an overall sublinear convergence with an explicit rate which is sharper than the usual O(1/k) for first order methods in optimization; (iii) more importantly, it converges R-linearly for a generic tensor without any assumption. I will explain how algebraic and differential geometric tools are used to obtain these results in optimization theory. This talk is based on joint works with Shenglong Hu.  

报告人简历:

叶科,中国科学院数学与系统科学研究院副研究员,入选海外高层次人才引进计划(青年项目),中科院百人计划(C类),中科院基础研究领域青年团队计划,以及中科院“陈景润未来之星”。研究兴趣是代数几何及微分几何在计算复杂度理论,(多重)线性代数,数值计算以及优化问题中的应用。工作主要发表于Adv. Math., FoCM, Math. Program., SIMAX, IEEE Info. Theory等重要国际期刊。

欢迎感兴趣的师生参加!

 

                          数学与统计学院

 

                                                20211122