数学与统计学院学术报告[2021] 116号
(高水平大学建设系列报告516号)
报告题目: Convergence analysis for low rank partially orthogonal tensor approximation problem
报告人:叶科 副研究员 (中国科学院数学与系统科学研究院)
报告时间:2021年11月24日 14:50-15:40
直播平台及链接: 腾讯会议 会议ID:647 171 244
报告内容:Low rank partially orthogonal tensor approximation (LRPOTA) is an important problem in tensor computations and their applications. It includes Low rank orthogonal tensor approximation (LROTA) problem as a special case. A classical and widely used algorithm for the LRPOTA problem is the alternating least square and polar decomposition method (ALS-APD). In this talk, we will introduce an improved version ALS-iAPD of the classical ALS-APD, for which all the following three fundamental properties will be addressed: (i) the algorithm converges globally and the whole sequence converges to a KKT point without any assumption; (ii) it exhibits an overall sublinear convergence with an explicit rate which is sharper than the usual O(1/k) for first order methods in optimization; (iii) more importantly, it converges R-linearly for a generic tensor without any assumption. I will explain how algebraic and differential geometric tools are used to obtain these results in optimization theory. This talk is based on joint works with Shenglong Hu.
报告人简历:
叶科,中国科学院数学与系统科学研究院副研究员,入选海外高层次人才引进计划(青年项目),中科院百人计划(C类),中科院基础研究领域青年团队计划,以及中科院“陈景润未来之星”。研究兴趣是代数几何及微分几何在计算复杂度理论,(多重)线性代数,数值计算以及优化问题中的应用。工作主要发表于Adv. Math., FoCM, Math. Program., SIMAX, IEEE Info. Theory等重要国际期刊。
欢迎感兴趣的师生参加!
数学与统计学院
2021年11月22日