学术报告

当前位置: 首页 学术报告 正文
学术报告三十一:Mahler measures of Landau-Ginzburg Potentials

时间:2021-04-25 16:31

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2021] 031

(高水平大学建设系列报告531)

报告题目: Mahler measures of Landau-Ginzburg Potentials

报告人: 费佳睿 副教授(上海交通大学

报告时间:2021428日下午15:00 - 16:00

直播平台及链接: Zoom meeting

会议号:880 745 1665

密码:Q7i1bK    

报告内容:

The (logarithmic) Mahler measures of an n-variable polynomial P is defined as the arithmetic mean of log |P| over the n-torus.

I will explain how a picture of mirror symmetry of Fano and CY varieties can guide us to find "interesting" families of Laurent polynomials.

The Mahler measures of those 23 families of (3-variable) Laurent polynomials can be expressed in terms of Eisenstein-Kronecker series.

The Mahler measure at each rational singular moduli is related to the value at 3 of the L-function of some weight-3 newform.

Moreover, I will show some exotic relations among the Mahler measures of these families.

Along the way, I will also recap what has been known for the 2-variable case and speculate on what may be done for more than 3 variables.

报告人简历:

费佳睿,密歇根大学博士,上海交通大学副教授,研究方向和兴趣包括:丛代数、箭图表示、李理论、不变量理论和马勒测度。费佳睿博士先后在加州大学河滨分校、MSRI、台北的理论科学中心担任访问助理教授、研究员等,2017年起在上海交通大学担任特别研究员。在Adv. Math.Proc. Lond. Math. Soc.等高水平数学杂志上发表多篇学术论文。

 

欢迎感兴趣的师生参加!

 

 

                       数学与统计学院

                                                2021425