数学与统计学院学术报告[2021] 031号
(高水平大学建设系列报告531号)
报告题目: Mahler measures of Landau-Ginzburg Potentials
报告人: 费佳睿 副教授(上海交通大学)
报告时间:2021年4月28日下午15:00 - 16:00
直播平台及链接: Zoom meeting
会议号:880 745 1665
密码:Q7i1bK
报告内容:
The (logarithmic) Mahler measures of an n-variable polynomial P is defined as the arithmetic mean of log |P| over the n-torus.
I will explain how a picture of mirror symmetry of Fano and CY varieties can guide us to find "interesting" families of Laurent polynomials.
The Mahler measures of those 23 families of (3-variable) Laurent polynomials can be expressed in terms of Eisenstein-Kronecker series.
The Mahler measure at each rational singular moduli is related to the value at 3 of the L-function of some weight-3 newform.
Moreover, I will show some exotic relations among the Mahler measures of these families.
Along the way, I will also recap what has been known for the 2-variable case and speculate on what may be done for more than 3 variables.
报告人简历:
费佳睿,密歇根大学博士,上海交通大学副教授,研究方向和兴趣包括:丛代数、箭图表示、李理论、不变量理论和马勒测度。费佳睿博士先后在加州大学河滨分校、MSRI、台北的理论科学中心担任访问助理教授、研究员等,2017年起在上海交通大学担任特别研究员。在Adv. Math.、Proc. Lond. Math. Soc.等高水平数学杂志上发表多篇学术论文。
欢迎感兴趣的师生参加!
数学与统计学院
2021年4月25日