学术报告

当前位置: 首页 学术报告 正文
学术报告一百三十五: Impulsive noise removal via a nonconvex optimization problem

时间:2020-12-04 11:56

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2020] 135

(高水平大学建设系列报告488)

报告题目: Impulsive noise removal via a nonconvex optimization problem

报告人:杨俊锋 教授(南京大学数学系)

报告时间:202012101600-1700

报告地点: 腾讯会议  会议 ID751 773 785

报告内容:

In this talk, I will first review some total variation based image processing models, including deblurring, inpainting, zooming, partial Fourier reconstruction and impulsive noise removal. We then consider a nonconvex TVSCAD model for image deblurring in the presence of high level impulsive noise. Our motivation is that data fitting should be enforced only when an observed data is not severely corrupted, while for those data more likely to be severely corrupted, less or even null penalization should be enforced. A difference of convex functions algorithm is adopted to solve the nonconvex TVSCAD model. Theoretically, we establish global and R-linear rate of convergence to a critical point of the nonconvex objective function. Numerically, experimental results are given to show that the TVSCAD approach improves those of the TVL1 significantly.

报告人简历:

杨俊锋,南京大学数学系教授,博导,先后师从中国科学院袁亚湘院士、南京大学何炳生教授、莱斯大学张寅教授。20097月起在南京大学数学系工作,主要从事最优化计算方法及其应用研究,开发图像去模糊软件包FTVd, 压缩感知一模解码软件包YALL1, 核磁共振图像复原软件包RecPF等。2012 年入选教育部新世纪优秀人才支持计划, 2016年获中国运筹学会青年科技奖。

欢迎感兴趣的师生参加!

 

数学与统计学院

 

                                                2020124