学术报告

当前位置: 首页 学术报告 正文
学术报告三十八:A Signal Separation Method Based on Adaptive Continuous Wavelet Transform and its Analysis

时间:2020-07-05 09:09

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2020] 038

(高水平大学建设系列报告391)

报告题目: A Signal Separation Method Based on Adaptive Continuous Wavelet Transform and its Analysis

报告人:蒋庆堂 教授(美国密苏里大学圣路易斯分校

报告时间:202075日上午9:30—10:20

直播平台及链接: 腾讯会议(会议ID315 722 390

报告内容:In nature and engineering world, the measured signals are usually affected by multiple complicated factors and they appear as multi-component non-stationary modes.  In many situations we need to separate these signals to a finite number of mono-components to represent the intrinsic modes and underlying dynamics implicated in the source signals. Recently we proposed a direct method of signal separation based on the adaptive continuous wavelet transform (CWT). We introduce two models of the adaptive CWT-based approach for signal separation: the sinusoidal signal-based model and the linear frequency modulation signal-based model. We obtained the theoretical analysis of our approach. For each model, we established the error bounds for instantaneous frequency estimation and component recovery. In this talk we will present our recent work on this research topic.

报告人简历:蒋庆堂1992年获得北京大学数学博士学位。1995年至1999年,他先后为NSTB博士后研究员和新加坡国立大学的研究员。2002年,他在加拿大阿尔伯塔大学和美国西弗吉尼亚大学担任访问职位。 他现在是密苏里大学圣路易斯分校数学和计算机科学系教授。 他目前的研究兴趣包括信号分类,图像处理,表面细分和信号稀疏表示。


欢迎感兴趣的师生参加!


                          数学与统计学院

                         202075