数学与统计学院学术报告[2020] 014号
(高水平大学建设系列报告367号)
报告题目: Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces
报告人:闫威 教授( 河南师范 大学)
报告时间:2020年6月4 日上午11:00--12:00
报告地点: 腾讯会议 会议号码:879430669
报告内容:We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation in the anisotropic Sobolev spaces. We prove that the Cauchy problem is locally well-posed which considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang (Transactions of the American Mathematical Society, 364(2012), 3395--3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not C^3。
报告人简历:闫威,河南师范大学教授,博士生导师, 2011年博士毕业于华南理工大学。研究兴趣包括调和分析,偏微分方程,随机偏微分方程和初值随机化。已在国内外重要期刊发表SCI 论文30余篇。
欢迎感兴趣的师生参加!
数学与统计学院
2020年06月02日