学术报告

当前位置: 首页 学术报告 正文
学术报告十四:Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

时间:2020-06-03 16:27

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2020] 014

(高水平大学建设系列报告367)

报告题目: Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

报告人:闫威  教授( 河南师范 大学)

报告时间:202064 日上午1100--1200

报告地点: 腾讯会议 会议号码:879430669

报告内容:We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation in the anisotropic Sobolev spaces. We prove that the Cauchy problem is locally well-posed which  considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang (Transactions of the American Mathematical Society, 364(2012), 3395--3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not C^3

报告人简历:闫威,河南师范大学教授,博士生导师, 2011年博士毕业于华南理工大学。研究兴趣包括调和分析,偏微分方程,随机偏微分方程和初值随机化。已在国内外重要期刊发表SCI 论文30余篇。


欢迎感兴趣的师生参加!



                          数学与统计学院

   20200602