数学科学学院学术报告[2023] 102号
(高水平大学建设系列报告874号)
报告题目:Hydrodynamic limit and Newtonian limit from the relativistic Boltzmann equation to the classical Euler equations
报告人:肖长国 博士(广西师范大学)
报告时间:2023年12月21日下午3:00-3:50
讲座地点:汇星楼514
报告内容:We justify rigorously the validity of the two independent limits from the special relativistic Boltzmann equation to the classical Euler equations without assuming any dependence between the Knudsen number$\varepsilon$ and the light speed $\mathfrak{c}$. The convergence rates are also obtained. This is achieved by Hilbert expansion of relativistic Boltzmann equation. New difficulties arise when tacking the uniform in $\mathfrak{c}$ and $\varepsilon$ estimates for the Hilbert expansion, which have been overcome by establishing some uniform-in-$\mathfrak{c}$ estimates for relativistic Boltzmann operators.
报告人简介:肖长国,2013年博士毕业于复旦大学,现工作于广西师范大学数学与统计学院,主要研究Boltzmann方程的适定性和流体动力学极限,流体力学中的偏微分方程,近年来在 J. Math. Fluid Mech.、Electronic Journal of Differential Equations、Z. Angew. Math. Phys.、Kinet. Relat.Models等期刊发表学术论文多篇。
欢迎师生参加!
邀请人:李杏
数学科学学院
2023年12月18日