数学科学学院学术报告[2024]101号
(高水平大学建设系列报告981号)
报告题目:Solving Coupled Nonlinear Forward-backward Stochastic Differential Equations: An Optimization Perspective with Backward Measurability Loss
报告人:倪元华 教授(南开大学)
报告时间:2024年10月17日晚上20:00—21:30
报告地点:腾讯会议:297-106-437密码09745
报告内容: This paper aims to extend the BML method proposed in [Probabilistic framework of Howard’s policy iteration: BML evaluation and robust convergence analysis, IEEE TAC,2023,DOI:10.1109/TAC.2023.3344870]to make it applicable to more general coupled nonlinear FBSDEs. We interpret BML from the fixed-point iteration perspective and show that optimizing BML is equivalent to minimizing the distance between two consecutive trial solutions in a fixed-point iteration. Thus, this paper provides a theoretical foundation for an optimization-based approach to solving FBSDEs. We also empirically evaluate the method through four numerical experiments.
报告人简历:倪元华,南开大学人工智能学院教授、博士生导师,博士毕业于中国科学院数学与系统科学研究院,研究方向为运筹学与最优化、最优控制与强化学习、群体智能与随机控制,曾获第22届关肇直奖(2016年度),现为期刊《System&Control Letters》的编委。
欢迎师生参加!
邀请人:王寒霄
数学科学学院
2024年10月15日