学术报告

当前位置: 首页 学术报告 正文
学术报告三十五:Minimal Entropy Conditions for Scalar Conservation Laws

时间:2025-05-09 16:31

主讲人 曹高伟 讲座时间 2025年5月14日上午10:30-11:30
讲座地点 汇星楼501 实际会议时间日 14
实际会议时间年月 2025.5

数学科学学院学术报告[2025] 035号

(高水平大学建设系列报告1057号)


报告题目:Minimal Entropy Conditions for Scalar Conservation Laws

报告人:曹高伟 副研究员中国科学院精密测量科学与技术创新研究院

报告时间:2025年5月14日上午10:30-11:30

报告地点:汇星楼501

报告内容:

In 1989, Arnol’d and Kruzkov et al., posed an important open question on whether only one single convex entropy η(u) can enforce the uniqueness of the solution for one-dimensional scalar conservation laws with convex flux functions, which is called the “Minimal Entropy Conditions” by De Lellis-Otto-Westdickenberg(2004).

For these scalar conservation laws, we prove that a single entropy-entropy flux pair (η(u),q(u)with η(u) of strict convexity is sufficient to single out an entropy solution from a broad class of weak solutions in  that satisfy the inequality: η(u)ₜ+q(u)ₓ⩽μ, controlled by some non-negative Radon measure μ (weaker than controlled by 0), in the distributional sense. Furthermore, we extend this result to the class of weak solutions in , based on the asymptotic behavior of the flux function f(u) and the entropy function η(u) at infinity. The proofs are based on the equivalence between the entropy solutions of one-dimensional scalar conservation laws and the viscosity solutions of the corresponding Hamilton-Jacobi equations, as well as the bilinear form and commutator estimates as employed similarly in the theory of compensated compactness. This is a joint work with Professor Gui-Qiang Chen.


报告人简历:曹高伟,中国科学院精密测量科学与技术创新研究院副研究员。主要从事双曲型守恒律方程,流体力学中欧拉方程,和随机偏微分方程的数学理论研究,曾多次到香港城市大学和牛津大学等进行学术访问。主持过国家自然科学基金青年项目,中科院多学科交叉项目等,在J. Differential Equations,AMS Quarterly of Applied Mathematics 等国内外数学期刊上,发表论文十余篇。


欢迎师生参加!

邀请人:李杏




    数学科学学院 

           2025年5月12日