科研成果 |
代表作</br> 10. Zejun Huang, Nung-Sing Sze, and Run Zheng, Linear maps preserving (p,k)-norms of tensor products of matrices, Canad. J. Math. DOI:10.4153/S0008414X23000858.</br>
9. Zejun Huang, Zhenhua Lyu, Extremal digraphs avoiding distinct walks of length 3 with the same endpoints, Discrete Math. 345 (2022) 112996.</br>
8. Zejun Huang, Zhenhua Lyu, 0-1 matrices whose k-th powers have bounded entries, Linear Multilinear Algebra 68 (2020) 1972-1982. </br>
7. Zejun Huang, Zhenhua Lyu, Extremal digraphs avoiding an orientation of C4, Discrete Math. 343 (2020) 111827. </br>
6. Zejun Huang, Zhenhua Lyu, Pu Qiao, Turán problems for digraphs avoiding distinct walks of a given length with the same endpoints, Discrete Math. 342 (2019) 1703-1717.</br>
5. Li-Ping Huang, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze, Graphs associated with matrices over finite fields and their endomorphisms, Linear Algebra Appl. 447 (2014) 2-25. </br>
4. Ajda Fošner, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze, Linear maps preserving Ky Fan norms and Schatten norms of tensor products of matrices, SIAM J. Matrix Anal. Appl. 34 (2013) 673-685. </br>
3. Zejun Huang and Xingzhi Zhan, Extremal digraphs whose walks with the same initial and terminal vertices have distinct lengths, Discrete Math. 312 (2012) 2203-2213.</br>
2. Zejun Huang, On the spectral radius and the spectral norm of Hadamard products of nonnegative matrices, Linear Algebra Appl. 434 (2011) 457-462.</br> 1. Zejun Huang and Xingzhi Zhan, Digraphs that have at most one walk of a given length with the same endpoints, Discrete Math. 311 (2011) 70-79.
|
科研项目 |
1.国家自然科学基金面上项目,2022.1-2025.12,关于有向图和0-1矩阵的极值问题(主持);</br> 2.广东省自然科学基金面上项目,2022.1-2024.12,关于有向图的Turán型问题(主持);</br> 3.深圳市基础研究面上项目,2020.3-2023.2,量子信息科学中的矩阵问题(主持);</br> 4.国家自然科学青年基金,2015.1-2017.12,组合矩阵论中的秩问题(主持)。 |