数学与统计学院学术报告[2020] 029号
(高水平大学建设系列报告382号)
报告题目: On strongly even cycle decomposable 4-regular line graphs
报告人: 崔庆 副教授 (南京航空航天大学)
报告时间:2020年7月3日16: 50-17: 50
直播平台及链接: 腾讯会议(会议号:266 256 581)
报告内容:A graph is even cycle decomposable if its edges can be partitioned into cycles of even length. A graph G is strongly even cycle decomposable if every subdivision of G with an even number of edges is even cycle decomposable. Markström conjectured that for any simple 2-connected cubic graph G, its line graph L(G) is even cycle decomposable. Máčajová and Mazák further asked whether L(G) is strongly even cycle decomposable. In this talk, we resolve this question (as well as Markström's conjecture) in the affirmative for a special class of cubic graphs. We prove that for a (not necessarily simple) 2-connected cubic graph G, if there exists a cycle C in G such that G-V(C) is a linear forest, then L(G) is strongly even cycle decomposable.
报告人简历: 崔庆,南京航空航天大学数学系副教授,硕士生导师。2009年博士毕业于南开大学组合数学中心,2017年在美国佐治亚州立大学交流访学。主要研究方向为结构图论,主持国家自然科学基金青年科学基金、中国博士后科学基金等项目,目前在Journal of Combinatorial Theory Series B、Journal of Graph Theory、The Electronic Journal of Combinatorics、Discrete Mathematics等学术期刊上发表论文20余篇。
欢迎感兴趣的师生参加!
数学与统计学院
2020年7月2日