数学科学学院学术报告[2024] 104号
(高水平大学建设系列报告984号)
报告题目:Asymptotic Stability of Shear Flows Near Couette with Navier Boundary Conditions
报告人:王飞 副教授(上海交通大学)
报告时间:2024年11月11日,下午13:30-14:30
报告地点:汇星楼一楼一号教室
报告摘要:We consider the 2D, incompressible Navier-Stokes equations near the Couette flow, $\omega^{(NS)} = 1 + \epsilon \omega$, set on the channel $\mathbb{T} \times [-1, 1]$, supplemented with Navier boundary conditions on the perturbation, $\omega|_{y = \pm 1} = 0$. We are simultaneously interested in two asymptotic regimes that are classical in hydrodynamic stability: the long time, $t \rightarrow \infty$, stability of background shear flows, and the inviscid limit, $\nu \rightarrow 0$ in the presence of boundaries. Given small ($\epsilon \ll 1$, but independent of $\nu$) Gevrey 2- datum, $\omega_0^{(\nu)}(x, y)$, that is supported away from the boundaries $y = \pm 1$.
This is the first nonlinear asymptotic stability result of its type, which combines three important physical phenomena at the nonlinear level: inviscid damping, enhanced dissipation, and long-time inviscid limit in the presence of boundaries.
报告人简介:王飞,上海交通大学数学科学学院,副教授,博士生导师。主要研究兴趣为流体相关的偏微分方程,具体包括边界层理论,流体稳定性,适定性等方面。研究成果发表在Adv. Math, ARMA, CMP等期刊。
欢迎师生参加!
邀请人:张擎天
数学科学学院
2024年10月24日