数学科学学院学术报告[2025] 036号
(高水平大学建设系列报告1058号)
报告题目:Density Hajnal—Szemerédi theorem for cliques of size four
报告人:侯建锋 教授(福州大学)
报告时间:2025年5月17日上午10:00-11:00
讲座地点:汇星楼501
报告内容:The celebrated Corrádi—Hajnal Theorem and the Hajnal—Szemerédi Theorem determined the exact minimum degree thresholds for a graph on n vertices to contain k vertex-disjoint copies of K_{r}, for r=3 and general r≥4, respectively. The edge density version of the Corrádi—Hajnal Theorem was established by Allen—Böttcher—Hladký—Piguet for large n. Remarkably, they determined the four classes of extremal constructions corresponding to different intervals of k. They further proposed the natural problem of establishing a density version of the Hajnal— Szemerédi Theorem: For r≥4, what is the edge density threshold that guarantees a graph on n vertices contains k vertex-disjoint copies of K_{r} for k≤n/r. They also remarked, "We are not even sure what the complete family of extremal graphs should be."
We take the first step toward this problem by determining asymptotically the five classes of extremal constructions for r=4. Furthermore, we propose a candidate set comprising r+1 classes of extremal constructions for general r≥5.
报告人简介:侯建锋,福州大学教授,博士生导师。2009年7月毕业于山东大学数学学院,获理学博士学位。2011年度全国优秀博士学位论文提名奖,2011年度福建省自然科学基金杰出青年项目获得者,2020年入选福建省“雏鹰计划”青年拔尖人才,主持国家重点研发课题1项,国家自然科学基金4项,参与重点项目1项,主要从事图论及其应用研究,发表论文60余篇。中国数学会组合数学与图论专业委员会秘书长,中国工业与应用数学学会图论组合及应用专业委员会常务委员。
欢迎师生参加!
邀请人:黄泽军
数学科学学院
2025年5月12日