学术报告

当前位置: 首页 学术报告 正文
学术报告一百三十七:Symmetrized Data Aggregation for FDR Control

时间:2021-12-02 16:15

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2021] 137

(高水平大学建设系列报告637)

报告题目: Symmetrized Data Aggregation for FDR Control

报告人:邹长亮 教授(南开大学

报告时间:120411:00-12:00

报告地点:腾讯会议:202-695-761  

报告内容:

We develop a new class of distribution–free multiple testing rules for FDR control. I will mainly illustrate the idea via multiple testing with general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence structure via sample splitting, data screening and information pooling. The SDA substantially outperforms the knockoff method in power under moderate to strong dependence, and is more robust than existing methods based on asymptotic p-values. I will also talk about some other applications, such as the selection of the number of change-points and threshold selection in feature screening.

报告人简历:

邹长亮, 南开大学统计与数据科学学院教授。08年于南开大学获博士学位,随后留校任教。主要从事统计学及其与数据科学领域的交叉研究和实际应用。研究兴趣包括:高维数据统计推断、大规模数据流分析、变点和异常点检测等,在Ann.Stat.Biometrika J.Am.Stat.Asso.Math. Program.Technometrics等统计学和工业工程领域期刊上发表论文几十篇,主持国家自然科学杰出青年基金等多项项目

欢迎感兴趣的师生参加!

 

                      数学与统计学院

 

                          2021122