学术报告

当前位置: 首页 学术报告 正文
学术报告一百三十二:The initial-value problem to the modified two-component Euler-Poincar\'{e} equations

时间:2021-12-01 10:36

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2021] 132

(高水平大学建设系列报告632)

报告题目:  The initial-value problem to the modified two-component Euler-Poincar\'{e} equations

报告人: 严凯 副教授 (华中科技大学)

报告时间:2021.12. 2上午900--1000

腾讯会议:158212554    

报告内容: In this talk, we are concerned with the initial-value problem for the modified two-component Euler-Poincar\'{e} equations including the classical Euler-Poincar\'{e} equations, integrable two-component Camassa-Holm system and its two-component modified version. We first establish the optimal local well-posedness and blow-up criteria for strong solutions to the equations in the Besov spaces. Then we construct its global and blow-up strong solutions by using the orthogonal and symmetric transform invariances. Subsequently, we show rigorously that the equations will recover to a symmetric hyperbolic system of conservation laws as the dispersion parameters vanish. Moreover, we prove the Liouville-type theorem for the stationary weak solutions to the equations. Finally, some further problems are proposed. This is a joint work with Professor Yue Liu.

报告人简历:严凯,现为华中科技大学数学与统计学院副教授,主要从事非线性偏微分方程的研究,尤其对浅水波模型的各类定解问题进行了较为系统与深入的研究。目前以第一作者或通讯作者在CMP, Math. Z, Rev. Mat. Iberoam, SIAM-JMAJDE等期刊杂志上发表SCI论文近20篇,主持国家自然科学基金面上项目与青年基金各1项,2019年获“香江学者计划”资助,2020年获聘华中科技大学“华中学者”晨星岗。

欢迎感兴趣的师生参加!

                          数学与统计学院

 

                                                2021121