数学与统计学院学术报告[2021] 128号
(高水平大学建设系列报告628号)
报告题目: Requentist Model Averaging for Undirected Gaussian Graphical Models
报告人:张新雨 研究员(中国科学院)
报告时间:12月02日16:10-17:10
腾讯会议:928884267
报告内容:
Summary: Advances in information technologies have made network data increasingly frequent in a spectrum of big data applications, which is often explored by probabilistic graphical models. To precisely estimate the precision
matrix, we propose an optimal model averaging estimator for Gaussian graphs (MAEGG).We prove that the proposed estimator is asymptotically optimal when candidate models are misspecified and achieves sample consistency when at least one correct model is included in the candidate set. Furthermore, numerical simulations and a real data analysis on yeast genetic data were conducted to illustrate that the proposed method is promising.
报告人简历:
张新雨,中科院研究员。主要从事计量经济学和统计学的理论和应用研究工作,具体研究方向包括模型平均、机器学习和组合预测等。担任期刊《JSSC》领域主编、期刊《SADM》、《系统科学与数学》、《应用概率统计》等的AE或编委,是双法学会数据科学分会副理事长、国际统计学会当选会员和智源青年科学家,主持国家自然科学基金委优秀和杰出青年基金项目。
欢迎感兴趣的师生参加!
数学与统计学院
2021年11月30日