数学与统计学院学术报告[2021] 122号
(高水平大学建设系列报告622号)
报告题目: Connection Problems for the First Painlevé Transcendent
报告人:龙文高 (湖南科技大学)
报告时间:2021年11月28日 10:30-11:30
腾讯会议: 948 408 614
报告内容:
In this talk, two connection problems for the first Painlevé equation (PI) are considered. First, we classify the PI solutions asymptotically by the initial data, and build the limiting connection formulas between the parameters in the asymptotic behavior when the independent variable tends to negative infinity and the initial data. Second, the PI solutions are asymptotically classified again in terms of the location of the poles and the free parameter in their Laurent series. As a by-product, we obtain the asymptotic behavior of the location of the n-th pole for the real tritronquée solution. Our main approach are based on complex WKB or the method of “uniform asymptotics”. Finally, numerical simulations are carried out to verify our main results and to investigate some new heuristic properties of the PI solutions.
报告人简历:
龙文高毕业于中山大学。他的研究方向为渐近分析,主要研究兴趣包括Painleve函数的渐近与连接问题、 正交多项式的渐近与Riemann-Hilbert方法以及差分方程的一致渐近等。先后在J. Approx. Theory. , Stud. Appl. Math., Constr. Approx. 等杂志上发表论文。
欢迎感兴趣的师生参加!
数学与统计学院
2021年11月25日