学术报告

当前位置: 首页 学术报告 正文
学术报告八十二:Central limit theorems for high dimensional dependent data

时间:2021-09-14 14:36

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2021] 082

(高水平大学建设系列报告582)

报告题目: Central limit theorems for high dimensional dependent data

报告人:常晋源 教授(西南财经大学

报告时间:91616:20-17:10

报告地点:汇星楼514                        

报告内容:

Motivated by statistical inference problems in high-dimensional time series analysis, we derive non-asymptotic error bounds for Gaussian approximations of sums of high-dimensional dependent random vectors on hyper-rectangles, simple convex sets and sparsely convex sets. We investigate the quantitative effect of temporal dependence on the rates of convergence to normality over three different dependency frameworks (\alpha-mixing, m-dependent, and physical dependence measure). In particular, we establish new error bounds under the \alpha-mixing framework and derive faster rate over existing results under the physical dependence measure. To implement the proposed results in practical statistical inference problems, we also derive a data-driven parametric bootstrap procedure based on a kernel-type estimator for the long-run covariance matrices.

报告人简历:

简介:常晋源,西南财经大学数据科学与商业智能联合实验室执行主任、光华特聘教授、博士生导师、国家杰出青年科学基金获得者、四川省特聘专家、四川省统计专家咨询委员会委员,主要从事“超高维数据分析”和“高频金融数据分析”两个领域的研究,现为Journal of the Royal Statistical Society Series BJournal of Business & Economic Statistics以及Statistica SinicaAssociate Editor

欢迎感兴趣的师生参加!

 

                   数学与统计学院

 

                   2021914