数学与统计学院学术报告[2020] 039号
(高水平大学建设系列报告392号)
报告题目: Quadratic-Phase Continuous Wavelet Transform for Separation of Nonstationary Signals with Crossover Instantaneous Frequencies
报告人:蒋庆堂 教授(美国密苏里大学圣路易斯分校)
报告时间:2020年7月5日上午10:30—11:20
直播平台及链接: 腾讯会议(会议ID:315 722 390)
报告内容:Recently the research on separating a multi-component non-stationary signal into its individual components has attracted a lot of attention. However, in many applications, multi-component signals are overlapping in the time-frequency plane, that is the instantaneous frequencies (IFs) of their components are crossover in the time-frequency plane. To estimate the IFs and to separate the components of a nonstationary signal with crossover IFs, we need a new approach. Very recently we proposed a new type of continuous wavelet transform which has a complex quadratic phase function, called the adaptive quadratic-phase continuous wavelet transform (AQCWT). Besides the time and scale variables of transitional continuous wavelet transform, AQCWT also contains the variable of chirp rate. In this talk we will show how AQCWT represents a multi-component signal in a three-dimension space of time, scale and chirp rate; and how it can be used to separate signals with crossing IFs.
报告人简历:蒋庆堂于1992年获得北京大学数学博士学位。1995年至1999年,他先后为NSTB博士后研究员和新加坡国立大学的研究员。2002年,他在加拿大阿尔伯塔大学和美国西弗吉尼亚大学担任访问职位。 他现在是密苏里大学圣路易斯分校数学和计算机科学系教授。 他目前的研究兴趣包括信号分类,图像处理,表面细分和信号稀疏表示。
欢迎感兴趣的师生参加!
数学与统计学院
2020年7月5日